Developing neuronal networks: Self-organized criticality predicts the future

نویسندگان

  • Jiangbo Pu
  • Hui Gong
  • Xiangning Li
  • Qingming Luo
چکیده

Self-organized criticality emerged in neural activity is one of the key concepts to describe the formation and the function of developing neuronal networks. The relationship between critical dynamics and neural development is both theoretically and experimentally appealing. However, whereas it is well-known that cortical networks exhibit a rich repertoire of activity patterns at different stages during in vitro maturation, dynamical activity patterns through the entire neural development still remains unclear. Here we show that a series of metastable network states emerged in the developing and "aging" process of hippocampal networks cultured from dissociated rat neurons. The unidirectional sequence of state transitions could be only observed in networks showing power-law scaling of distributed neuronal avalanches. Our data suggest that self-organized criticality may guide spontaneous activity into a sequential succession of homeostatically-regulated transient patterns during development, which may help to predict the tendency of neural development at early ages in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of membrane potential fluctuations to the criticality of neuronal avalanche activity

Experimental evidence for self-organised criticality (SOC) in nonconservative systems has recently been found in studies of rat cortical slices. The size distribution of observed neuronal avalanches has been attested to obey 3/2 powerlaw scaling. A mean-field sandpile model of a noisy neuronal system is proposed to refute the irreconcilability between non-conservation and criticality put forwar...

متن کامل

Self-Organized Criticality in Developing Neuronal Networks

Recently evidence has accumulated that many neural networks exhibit self-organized criticality. In this state, activity is similar across temporal scales and this is beneficial with respect to information flow. If subcritical, activity can die out, if supercritical epileptiform patterns may occur. Little is known about how developing networks will reach and stabilize criticality. Here we monito...

متن کامل

Synaptic Noise Facilitates the Emergence of Self-Organized Criticality in the Caenorhabditis elegans Neuronal Network

Avalanches with power-law distributed size parameters have been observed in neuronal networks. This observation might be a manifestation of the self-organized criticality (SOC). Yet, the physiological mechanicsm of this behavior is currently unknown. Describing synaptic noise as transmission failures mainly originating from the probabilistic nature of neurotransmitter release, this study invest...

متن کامل

At the Edge of Chaos: Real-time Computations and Self-Organized Criticality in Recurrent Neural Networks

In this paper we analyze the relationship between the computational capabilities of randomly connected networks of threshold gates in the timeseries domain and their dynamical properties. In particular we propose a complexity measure which we find to assume its highest values near the edge of chaos, i.e. the transition from ordered to chaotic dynamics. Furthermore we show that the proposed comp...

متن کامل

Self-organized criticality and scale-free properties in emergent functional neural networks.

Recent studies on complex systems have shown that the synchronization of oscillators, including neuronal ones, is faster, stronger, and more efficient in small-world networks than in regular or random networks. We show that the functional structures in the brain can be self-organized to both small-world and scale-free networks by synaptic reorganization via spike timing dependent synaptic plast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013